3.2303 \(\int \frac{a+b x}{\sqrt{1+x} \sqrt{1-x+x^2}} \, dx\)

Optimal. Leaf size=275 \[ \frac{2 \sqrt{2+\sqrt{3}} \sqrt{x+1} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} \left (a-\left (1-\sqrt{3}\right ) b\right ) \text{EllipticF}\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right ),-7-4 \sqrt{3}\right )}{\sqrt [4]{3} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^2-x+1}}+\frac{2 b \left (x^3+1\right )}{\sqrt{x+1} \left (x+\sqrt{3}+1\right ) \sqrt{x^2-x+1}}-\frac{\sqrt [4]{3} \sqrt{2-\sqrt{3}} b \sqrt{x+1} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} E\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{\sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^2-x+1}} \]

[Out]

(2*b*(1 + x^3))/(Sqrt[1 + x]*(1 + Sqrt[3] + x)*Sqrt[1 - x + x^2]) - (3^(1/4)*Sqrt[2 - Sqrt[3]]*b*Sqrt[1 + x]*S
qrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticE[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])
/(Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 - x + x^2]) + (2*Sqrt[2 + Sqrt[3]]*(a - (1 - Sqrt[3])*b)*Sqrt[1 + x
]*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3
]])/(3^(1/4)*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 - x + x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.103888, antiderivative size = 275, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.16, Rules used = {809, 1878, 218, 1877} \[ \frac{2 \sqrt{2+\sqrt{3}} \sqrt{x+1} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} \left (a-\left (1-\sqrt{3}\right ) b\right ) F\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{\sqrt [4]{3} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^2-x+1}}+\frac{2 b \left (x^3+1\right )}{\sqrt{x+1} \left (x+\sqrt{3}+1\right ) \sqrt{x^2-x+1}}-\frac{\sqrt [4]{3} \sqrt{2-\sqrt{3}} b \sqrt{x+1} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} E\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{\sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^2-x+1}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x)/(Sqrt[1 + x]*Sqrt[1 - x + x^2]),x]

[Out]

(2*b*(1 + x^3))/(Sqrt[1 + x]*(1 + Sqrt[3] + x)*Sqrt[1 - x + x^2]) - (3^(1/4)*Sqrt[2 - Sqrt[3]]*b*Sqrt[1 + x]*S
qrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticE[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])
/(Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 - x + x^2]) + (2*Sqrt[2 + Sqrt[3]]*(a - (1 - Sqrt[3])*b)*Sqrt[1 + x
]*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3
]])/(3^(1/4)*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 - x + x^2])

Rule 809

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[
((d + e*x)^FracPart[p]*(a + b*x + c*x^2)^FracPart[p])/(a*d + c*e*x^3)^FracPart[p], Int[(f + g*x)*(a*d + c*e*x^
3)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && EqQ[m, p] && EqQ[b*d + a*e, 0] && EqQ[c*d + b*e, 0]

Rule 1878

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a,
 3]]}, Dist[(c*r - (1 - Sqrt[3])*d*s)/r, Int[1/Sqrt[a + b*x^3], x], x] + Dist[d/r, Int[((1 - Sqrt[3])*s + r*x)
/Sqrt[a + b*x^3], x], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && NeQ[b*c^3 - 2*(5 - 3*Sqrt[3])*a*d^3, 0]

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 1877

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Simplify[((1 - Sqrt[3])*d)/c]]
, s = Denom[Simplify[((1 - Sqrt[3])*d)/c]]}, Simp[(2*d*s^3*Sqrt[a + b*x^3])/(a*r^2*((1 + Sqrt[3])*s + r*x)), x
] - Simp[(3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*Elli
pticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(r^2*Sqrt[a + b*x^3]*Sqrt[(s*(
s + r*x))/((1 + Sqrt[3])*s + r*x)^2]), x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && EqQ[b*c^3 - 2*(5 - 3*Sqrt[3
])*a*d^3, 0]

Rubi steps

\begin{align*} \int \frac{a+b x}{\sqrt{1+x} \sqrt{1-x+x^2}} \, dx &=\frac{\sqrt{1+x^3} \int \frac{a+b x}{\sqrt{1+x^3}} \, dx}{\sqrt{1+x} \sqrt{1-x+x^2}}\\ &=\frac{\left (b \sqrt{1+x^3}\right ) \int \frac{1-\sqrt{3}+x}{\sqrt{1+x^3}} \, dx}{\sqrt{1+x} \sqrt{1-x+x^2}}+\frac{\left (\left (a-\left (1-\sqrt{3}\right ) b\right ) \sqrt{1+x^3}\right ) \int \frac{1}{\sqrt{1+x^3}} \, dx}{\sqrt{1+x} \sqrt{1-x+x^2}}\\ &=\frac{2 b \left (1+x^3\right )}{\sqrt{1+x} \left (1+\sqrt{3}+x\right ) \sqrt{1-x+x^2}}-\frac{\sqrt [4]{3} \sqrt{2-\sqrt{3}} b \sqrt{1+x} \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}} E\left (\sin ^{-1}\left (\frac{1-\sqrt{3}+x}{1+\sqrt{3}+x}\right )|-7-4 \sqrt{3}\right )}{\sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1-x+x^2}}+\frac{2 \sqrt{2+\sqrt{3}} \left (a-\left (1-\sqrt{3}\right ) b\right ) \sqrt{1+x} \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac{1-\sqrt{3}+x}{1+\sqrt{3}+x}\right )|-7-4 \sqrt{3}\right )}{\sqrt [4]{3} \sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1-x+x^2}}\\ \end{align*}

Mathematica [C]  time = 1.20886, size = 389, normalized size = 1.41 \[ -\frac{(x+1)^{3/2} \left (\frac{\sqrt{2} \sqrt{\frac{-\frac{6 i}{x+1}+\sqrt{3}+3 i}{\sqrt{3}+3 i}} \sqrt{\frac{\frac{6 i}{x+1}+\sqrt{3}-3 i}{\sqrt{3}-3 i}} \left (\left (3-i \sqrt{3}\right ) b-2 i \sqrt{3} a\right ) \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{-\frac{6 i}{\sqrt{3}+3 i}}}{\sqrt{x+1}}\right ),\frac{\sqrt{3}+3 i}{-\sqrt{3}+3 i}\right )}{\sqrt{x+1}}-\frac{12 \sqrt{-\frac{i}{\sqrt{3}+3 i}} b \left (x^2-x+1\right )}{(x+1)^2}+\frac{3 i \sqrt{2} \left (\sqrt{3}+i\right ) b \sqrt{\frac{-\frac{6 i}{x+1}+\sqrt{3}+3 i}{\sqrt{3}+3 i}} \sqrt{\frac{\frac{6 i}{x+1}+\sqrt{3}-3 i}{\sqrt{3}-3 i}} E\left (i \sinh ^{-1}\left (\frac{\sqrt{-\frac{6 i}{3 i+\sqrt{3}}}}{\sqrt{x+1}}\right )|\frac{3 i+\sqrt{3}}{3 i-\sqrt{3}}\right )}{\sqrt{x+1}}\right )}{6 \sqrt{-\frac{i}{\sqrt{3}+3 i}} \sqrt{x^2-x+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x)/(Sqrt[1 + x]*Sqrt[1 - x + x^2]),x]

[Out]

-((1 + x)^(3/2)*((-12*Sqrt[(-I)/(3*I + Sqrt[3])]*b*(1 - x + x^2))/(1 + x)^2 + ((3*I)*Sqrt[2]*(I + Sqrt[3])*b*S
qrt[(3*I + Sqrt[3] - (6*I)/(1 + x))/(3*I + Sqrt[3])]*Sqrt[(-3*I + Sqrt[3] + (6*I)/(1 + x))/(-3*I + Sqrt[3])]*E
llipticE[I*ArcSinh[Sqrt[(-6*I)/(3*I + Sqrt[3])]/Sqrt[1 + x]], (3*I + Sqrt[3])/(3*I - Sqrt[3])])/Sqrt[1 + x] +
(Sqrt[2]*((-2*I)*Sqrt[3]*a + (3 - I*Sqrt[3])*b)*Sqrt[(3*I + Sqrt[3] - (6*I)/(1 + x))/(3*I + Sqrt[3])]*Sqrt[(-3
*I + Sqrt[3] + (6*I)/(1 + x))/(-3*I + Sqrt[3])]*EllipticF[I*ArcSinh[Sqrt[(-6*I)/(3*I + Sqrt[3])]/Sqrt[1 + x]],
 (3*I + Sqrt[3])/(3*I - Sqrt[3])])/Sqrt[1 + x]))/(6*Sqrt[(-I)/(3*I + Sqrt[3])]*Sqrt[1 - x + x^2])

________________________________________________________________________________________

Maple [A]  time = 0.037, size = 313, normalized size = 1.1 \begin{align*}{\frac{1}{{x}^{3}+1} \left ( -i{\it EllipticF} \left ( \sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}},\sqrt{-{\frac{-3+i\sqrt{3}}{i\sqrt{3}+3}}} \right ) \sqrt{3}a+i{\it EllipticF} \left ( \sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}},\sqrt{-{\frac{-3+i\sqrt{3}}{i\sqrt{3}+3}}} \right ) \sqrt{3}b+3\,{\it EllipticF} \left ( \sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}},\sqrt{-{\frac{-3+i\sqrt{3}}{i\sqrt{3}+3}}} \right ) a+3\,{\it EllipticF} \left ( \sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}},\sqrt{-{\frac{-3+i\sqrt{3}}{i\sqrt{3}+3}}} \right ) b-6\,{\it EllipticE} \left ( \sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}},\sqrt{-{\frac{-3+i\sqrt{3}}{i\sqrt{3}+3}}} \right ) b \right ) \sqrt{1+x}\sqrt{{x}^{2}-x+1}\sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}}\sqrt{{\frac{i\sqrt{3}-2\,x+1}{i\sqrt{3}+3}}}\sqrt{{\frac{i\sqrt{3}+2\,x-1}{-3+i\sqrt{3}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)/(1+x)^(1/2)/(x^2-x+1)^(1/2),x)

[Out]

(-I*EllipticF((-2*(1+x)/(-3+I*3^(1/2)))^(1/2),(-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))*3^(1/2)*a+I*EllipticF((-2
*(1+x)/(-3+I*3^(1/2)))^(1/2),(-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))*3^(1/2)*b+3*EllipticF((-2*(1+x)/(-3+I*3^(1
/2)))^(1/2),(-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))*a+3*EllipticF((-2*(1+x)/(-3+I*3^(1/2)))^(1/2),(-(-3+I*3^(1/
2))/(I*3^(1/2)+3))^(1/2))*b-6*EllipticE((-2*(1+x)/(-3+I*3^(1/2)))^(1/2),(-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))
*b)*(1+x)^(1/2)*(x^2-x+1)^(1/2)*(-2*(1+x)/(-3+I*3^(1/2)))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*((I*3^
(1/2)+2*x-1)/(-3+I*3^(1/2)))^(1/2)/(x^3+1)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{b x + a}{\sqrt{x^{2} - x + 1} \sqrt{x + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)/(1+x)^(1/2)/(x^2-x+1)^(1/2),x, algorithm="maxima")

[Out]

integrate((b*x + a)/(sqrt(x^2 - x + 1)*sqrt(x + 1)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (b x + a\right )} \sqrt{x^{2} - x + 1} \sqrt{x + 1}}{x^{3} + 1}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)/(1+x)^(1/2)/(x^2-x+1)^(1/2),x, algorithm="fricas")

[Out]

integral((b*x + a)*sqrt(x^2 - x + 1)*sqrt(x + 1)/(x^3 + 1), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{a + b x}{\sqrt{x + 1} \sqrt{x^{2} - x + 1}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)/(1+x)**(1/2)/(x**2-x+1)**(1/2),x)

[Out]

Integral((a + b*x)/(sqrt(x + 1)*sqrt(x**2 - x + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{b x + a}{\sqrt{x^{2} - x + 1} \sqrt{x + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)/(1+x)^(1/2)/(x^2-x+1)^(1/2),x, algorithm="giac")

[Out]

integrate((b*x + a)/(sqrt(x^2 - x + 1)*sqrt(x + 1)), x)